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Abstract

This paper considers the statistical distribution of natural frequency splits for an initially perfect ring
with different types of random mass imperfection. The analysis used to derive analytical expressions for the
natural frequency splits is based on a Rayleigh–Ritz approach, in which it is assumed that the mode shapes
of the imperfect rings are identical to those of a perfect ring. The types of random mass imperfection
investigated are: (i) random harmonic variations in the mass per unit length around the circumference of
the ring; (ii) the attachment of random point masses at random locations on the ring; and (iii) the
attachment of random point masses at uniformly spaced positions on the ring. For case (i) it is found that
the frequency splits always have a Rayleigh distribution. For case (ii) an expression for the statistical
distribution is deduced which tends to a Rayleigh distribution as the number of attached masses increases.
For case (iii) it is found that the frequency split distribution is dependent upon the mode considered and the
number of attached masses, and that in some situations the frequency splits have a ‘‘half Gaussian’’ (i.e.,
non-Rayleigh) distribution.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the vibration modes of a perfectly axi-symmetric ring occur in degenerate
pairs, such that the natural frequencies are equal, and the mode shapes are spatially orthogonal
having indeterminate angular position. In practice, imperfections due to manufacturing variations
and material non-uniformity fix the positions of the modes relative to the ring and yield small
frequency splits. In some mechanical systems, such as ring based gyroscopic rate sensors [1,2], the
influence of such imperfections is of extreme importance.
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Tobias [3] performed the first studies on the influence of imperfection on the vibration
characteristics of axi-symmetric structures. This work gave a good description of the qualitative
effects of imperfection, whilst it was not until much later that a quantitative description was
provided. Laura et al. [4] and Tonin and Bies [5] have investigated the effect of circumferential
variations in wall thickness on a ring and eccentric cylinder, respectively, using the Rayleigh–Ritz
approach and the finite element method. More recently, Hwang et al. [6–8] have used the
Rayleigh–Ritz analysis to consider general profile variations of a ring, whilst Eley et al. [9] have
considered the influence of anisotropy on the vibration characteristics of circular crystalline
silicon rings. Whilst the above work considers the influence of imperfection on the vibration
characteristics of axi-symmetric structures, some other research relates to the inverse (so-called
trimming) problem in which the aim is to modify the structure to eliminate the frequency splits.
This problem has been considered by Fox [10,11] and Allaei et al. [12] for a single pair of modes
using the Rayleigh–Ritz method and receptance method, respectively. Recent work by Rourke
et al. [13,14] has extended the method developed by Fox to the simultaneous trimming of a
multiple number of modes of vibration.
All of the above work effectively investigates the influence of particular forms of imperfection

on the splitting of the natural frequencies. In practice, the imperfections present will be random,
varying from one structure to the next. It is for this reason that the statistical distribution of the
frequency splits is of interest. The aim of the work described here is to investigate the influence of
different types of random mass imperfection on an initially perfect ring so as to gain a better
understanding of the influence of manufacturing uncertainties on the statistical distribution of the
frequency splits. Section 2 outlines the results used to calculate the natural frequencies in terms of
the initially perfect ring and the attached masses. Section 3 outlines the splitting rules for a perfect
ring with uniformly spaced point masses and a perfect ring with random harmonic variations in
the mass per unit length. Section 4 investigates the statistical distribution of the frequency splits
for a ring with: (i) random harmonic variations in the mass per unit length; (ii) random point
masses attached at random locations; and (iii) uniformly spaced random point masses.

2. Natural frequencies of rings with attached masses

Consider an imperfect ring for which the natural frequencies of the pair of orthogonal in-plane
modes having n nodal diameters are on1 and on2: Here it is assumed that the radial ðwÞ and
tangential displacements ðuÞ of the ring in the nth mode pair are given by

w ¼ W cos nf exp ðiontÞ; u ¼ U sin nf expðiontÞ; ð1; 2Þ

where the mode orientations cn1 ¼ cn2 � p=2n: The assumption that the mode shapes are
identical to those of a perfect ring adopted in these equations is reasonable provided that the
degree of imperfection is sufficiently small. This assumption was tested by Rourke et al. [13] using
a 3-term Rayleigh–Ritz procedure.
The effect of attached masses and springs on the natural frequencies and mode positions of a

ring has been investigated previously by Fox [10]. In that study, a Rayleigh–Ritz approach was
used to determine analytical expressions for the split natural frequencies in terms of the magnitude
and location of the added masses, radial springs and torsional springs. Following this approach it
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can be shown (see Ref. [13] for details) that the natural frequencies on1 and on2; and
mode orientation cn of the nth mode for a perfect ring with attached point masses are
given by

o2
n1;n2 ¼ o2

0n

1þ a2n
ð1þ a2nÞ þ

P
i mi½ð1þ a2nÞ7ða2n � 1Þ cos 2nðfi � cnÞ�=M0

� �
; ð3Þ

tan 2ncn ¼
P

i mi sin 2nfiP
i mi cos 2nfi

; ð4Þ

where mi and fi denote the magnitude and angular location of the ith added mass ði ¼ 1; 2;y;NÞ;
an is the amplitude ratio W=U ; o0n is the natural frequency of the original perfect ring, and M0 is
the mass of the perfect ring.
Eqs. (3) and (4) provide a means for determining the mode orientation and frequency splits

resulting from the addition of imperfection masses at particular locations to an initially perfect
ring, and have been used in previous work by the authors to perform so-called trimming analyses
[13,14]. It is worthwhile noting that Eq. (3) is dependent upon knowledge of the mode orientation
given by Eq. (4). Given that the orientation varies with the addition of mass, it is necessary to re-
express the natural frequencies in a form independent of the orientation. It is shown in Appendix
A that this can be achieved by combining Eqs. (3) and (4), such that the natural frequencies can be
expressed by

o2
n1;n2 ¼

o2
0n

1þ
P

i mi=M07
ða2n � 1Þ

M0ða2n þ 1Þ
P

i mi cos 2nfi

� �2þ P
i mi sin 2nfi

� �2� �1=2: ð5Þ

This equation provides a means of determining the natural frequencies resulting from the addition
of imperfection masses at particular locations to an initially perfect ring. In accordance with the
assumption that the mode shapes of the imperfect ring are identical to those of the perfect ring it is
justifiable to expand Eq. (5) as a two-term binomial series to determine approximate expressions
for the natural frequencies such that

on1;n2 ¼ o0n 1þ
1

2

X
i

mi=M07
ða2n � 1Þ

2M0ða2n þ 1Þ

X
i

mi cos 2nfi

 !2

þ
X

i

mi sin 2nfi

 !2
0
@

1
A

1=2
0
B@

1
CA:

ð6Þ

This equation is well suited to determining the frequency split D associated with the attachment of
point masses, and yields

D ¼ on1 � on2 ¼
o0nða2n � 1Þ
M0ða2n þ 1Þ

X
i

mi cos 2nfi

 !2

þ
X

i

mi sin 2nfi

 !2
0
@

1
A

1=2

: ð7Þ
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For the situation when the mass varies continuously around the circumference of the ring, Eq. (7)
is modified as follows:

D ¼ on1 � on2 ¼
o0nRða2n � 1Þ
M0ða2n þ 1Þ

Z 2p

0

rðfÞ cos 2nf df
� �2

þ
Z 2p

0

rðfÞ sin 2nf df
� �2

 !1=2

; ð8Þ

where rðfÞ denotes the mass per unit length at location f around the circumference of the ring,
and R is the mean radius of the ring. As a consequence of deriving this expression from a point
mass perspective, the influence of rotational inertia is neglected.
In the following, Eqs. (7) and (8) will be used to determine the probability density function of

natural frequency splits for rings with different types of mass imperfection. However, before doing
this, a review of the splitting rules for rings with mass variations is provided.

3. Frequency splitting rules

In this section a review of the splitting rules is provided for: (i) a perfect ring with identical,
uniformly spaced point masses; and (ii) a perfect ring with harmonic variations in the mass per
unit length.

3.1. Identical, uniformly spaced point masses

In this case identical masses are distributed uniformly around the circumference of
the ring. Setting mj ¼ m and fj ¼ 2pj=N; where N is the number of attached point
masses, in Eq. (7) (or more generally Eq. (5)) it can be deduced that the frequency split is zero
when:

XN

j¼1

sin ð4npj=NÞ ¼ 0; ð9Þ

XN

j¼1

cos ð4npj=NÞ ¼ 0: ð10Þ

These equations can be used to deduce the conditions required for the natural frequencies to split.
Appendix B proves that Eq. (9) is always satisfied, whilst Appendix C proves that Eq. (10) is only
satisfied when 2n=Nainteger: Using these results it can be deduced that the natural frequencies
will split only when 2n=N is an integer. This rule was discovered first by Charnley and Perrin
[15,16] using a combination of perturbation analysis and Group theory. The rule has been used to
consider different combinations of n ð¼ 2; 3;y; 6Þ and N ð¼ 2; 3;y; 8Þ and the results are shown
in Table 1. This table indicates whether a particular combination of n and N yield split (or equal)
frequencies.
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3.2. Harmonic variations in the mass per unit length

In this case the mass per unit length rðfÞ is expressed using a Fourier series where

rðfÞ ¼ a0 þ
XM
i¼1

ðai cos ifþ bi sin ifÞ; ð11Þ

where ai and bi are Fourier coefficients.
Substituting Eq. (11) into Eq. (8) and evaluating the integrals it can be shown easily that the

frequency split will be zero only when

a2n ¼ b2n ¼ 0; ð12Þ

i.e., when there is no ‘‘2nf’’ variation in the mass per unit length around the circumference of the
ring.

4. Statistical distribution of natural frequency splits

It is convenient at this stage to express Eqs. (7) and (8) as follows:

D ¼ on1 � on2 ¼
o0nða2n � 1Þ
M0ða2n þ 1Þ

ðz21 þ z22Þ
1=2; ð13Þ

where z1; z2 are random variables defined by

z1 ¼
XN

i¼1

mi cos 2nfi; z2 ¼
XN

i¼1

mi sin 2nfi; ð14; 15Þ

when N point masses are attached, and

z1 ¼ R

Z 2p

0

rðfÞ cos 2nf df; z2 ¼ R

Z 2p

0

rðfÞ sin 2nf df; ð16; 17Þ

when the mass per unit length varies continuously around the circumference of the ring.
The random nature of z1; z2 will directly influence the probability density function of the

frequency split given in Eq. (13). In the following the probability density function of the natural
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Table 1

Natural frequency splitting rules for a perfect ring with identical, uniformly spaced masses for various combinations of

mode and added masses

N

2 3 4 5 6 7 8

n ¼ 2 Split Equal Split Equal Equal Equal Equal

n ¼ 3 Split Split Equal Equal Split Equal Equal

n ¼ 4 Split Equal Split Equal Equal Equal Split

n ¼ 5 Split Equal Equal Split Equal Equal Equal

n ¼ 6 Split Split Split Equal Split Equal Equal
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frequency split is investigated for a number of different situations. These include: (i) random
harmonic variations of the mass per unit length around the circumference of ring; (ii) attachment
of random point masses at random locations; and (iii) attachment of random point masses at
uniformly spaced locations. Each of these will be considered in turn.

4.1. Random harmonic variations in the mass per unit length

Harmonic variations in the mass per unit length are expected to arise as a result of material
processing and/or the manufacturing process. For the purposes of analysis, the mass per unit
length is defined by Eq. (11) and it is assumed that the Fourier coefficients are statistically
independent, zero mean Gaussian random variables, possessing the following statistical
properties:

E½a2i � ¼ E½b2i � ¼ s2i ; ð18Þ

E½aiaj� ¼ E½bibj� ¼ 0; iaj; ð19Þ

E½aibj� ¼ 0 for all i; j; ð20Þ

where E½y� is the expectation operator.
Substituting Eq. (11) into Eqs. (16) and (17) and using Eqs. (18)–(20), it can be shown

easily that z1 and z2 are statistically independent, zero-mean Gaussian random variables, such
that

sz1 ¼ sz2 ¼ s2n; ð21Þ

where szi is the standard deviation of zi: Using these results in conjunction with Eq. (13) and a
transformation of variables it can be shown easily that the frequency split will have a Rayleigh
distribution such that

pðDÞ ¼
D
s2

exp �
1

2

D2

s2

� �� �
; ð22Þ

where s is given by

s ¼
o0nRs2nða2n � 1Þ

M0ða2n þ 1Þ
: ð23Þ

Fig. 1 shows a Rayleigh distribution plotted on normalized axes.
In summary, the presence of independent random harmonic variations in the mass per unit

length yield frequency splits that possess a Rayleigh distribution.

4.2. Random point masses at random locations

Small discrete changes in the mass properties of the ring can arise due to the presence of
manufacturing imperfections, damage to the structure, and/or material non-uniformities. For the
purposes of analysis these changes are modelled as random point masses, in which the point
masses are assumed to be zero-mean Gaussian random variables with the following statistical
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properties:

E½m2
i � ¼ s2m; ð24Þ

E½mimj� ¼ 0; iaj; ð25Þ

where sm is the standard deviation of each attached mass. Furthermore, it is assumed that the
point masses are distributed around the circumference of the ring with a uniform distribution,
ensuring that no location around the circumference of the ring is preferred.
To determine the statistical distribution of the frequency split it is necessary to consider the

joint statistical distribution of z1 and z2; and to achieve this it is necessary to consider the joint
characteristic function Mðy1; y2Þ where

Mðy1; y2Þ ¼ E½expðiy1z1 þ iy2z2Þ�; ð26Þ

and the joint probability density function of z1 and z2 is given by

pðz1; z2Þ ¼
1

ð2pÞ2

Z
N

�N

Z
N

�N

Mðy1; y2Þ expð�iy1z1 � iy2z2Þ dy1 dy2: ð27Þ

It is shown in Appendix D that the joint characteristic function is given by

Mðy1; y2Þ ¼ exp �
Nðy21 þ y22Þs

2
m

4

� �
I0

ðy21 þ y22Þs
2
m

4

� �� �N

; ð28Þ

where I0 is the zeroth order modified Bessel function of the first kind. This equation indicates
that the joint characteristic function is axially symmetric, and that a more convenient
representation is afforded by using polar co-ordinates. Substituting Eq. (28) into Eq. (27),
and using the transformations of variables: y1 ¼ s cos x; y2 ¼ s sin x; z1 ¼ ðD=lÞ cosc; and
z2 ¼ ðD=lÞ sin c; where l ¼ o0nða2n � 1Þ=ðM0ða2n þ 1ÞÞ it can be shown that the joint pdf pðD;cÞ is
given by

pðD;cÞ ¼
D

ð2pÞ2

Z 2p

0

Z
N

0

sMðs; xÞ expð�isD cosðx� cÞÞ ds dx; ð29Þ
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Fig. 1. Rayleigh distribution.
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where

Mðs; xÞ ¼ exp �
Ns2s2m
4

� �
I0

s2s2m
4

� �� �N

: ð30Þ

Performing the integration over x and then integrating the resulting expression over c from 0 to
2p; it can be shown that the probability density function of the frequency split is given by

pðDÞ ¼ D
Z

N

0

s exp �
Ns2s2m
4

� �
I0

s2s2m
4

� �N

J0ðslDÞ ds; ð31Þ

where J0 is the zeroth order Bessel function of the first kind. Eq. (29) is an analytical expression
for the statistical distribution of the frequency split for a perfect ring with random (zero mean)
point masses attached at random locations. It is worthwhile noting that as the number of added
masses N increases, the central limit theorem [17] ensures that the probability density function D
approaches the Rayleigh distribution (see Eq. (22)) with

s ¼
o0n

ffiffiffiffiffi
N

p
smða2n � 1Þ

M0ða2n þ 1Þ
: ð32Þ

The Rayleigh character of the distribution can be proved easily by noting that the joint
characteristic function (Eq. (28)) tends to

Mðy1; y2Þ ¼ exp �
Nðy21 þ y22Þs

2
m

4

� �
for N large ð33Þ

as N becomes large. Eq. (33) ensures that pðz1; z2Þ is Gaussian, and that z1 and z2 are statistically
independent. As a consequence of this, the frequency split tends to a Rayleigh distribution as N

increases.
Figs. 2(a)–(f) show some numerical results for the cases Nð¼ 1; 2; 3; 5; 10; 20Þ attached masses,

where the distribution has been plotted on normalized axes in each case. For the purposes of
validation, the plots are compared with the results from numerical simulation (40,000 samples). In
addition, a Rayleigh distribution is shown for comparison. In each case it can be seen that the
developed results give excellent agreement with numerical simulation. For the case when N ¼ 1
the distribution is highly non-Rayleigh—this case is considered in the following Section where it
will be shown that it is in fact a ‘‘half-Gaussian’’ distribution. For N ¼ 2; 3;y the statistical
distribution takes a form that is much more representative of a Rayleigh distribution, and as N

increases the frequency split distribution quickly approaches a Rayleigh distribution.

4.3. Uniformly spaced, random point masses

This situation models the manufacturing imperfections present due to the presence of a
symmetric supporting structure for the ring. For example, they could represent the point of
attachment for spoked supports. For the purposes of analysis, the magnitude of the attached
point masses is expressed as the sum of a mean component, representing the mean added mass
from the support (say), and a zero-mean Gaussian random variable, such that

mi ¼ mm þ sm dmi; ð34Þ
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where mm and sm are the mean and standard deviation of the magnitude of each mass, and dmi are
zero-mean, statistically independent Gaussian random variables possessing the following
statistical properties:

E½dmi dmj� ¼ dij; ð35Þ

where dij is zero when iaj and unity otherwise.
Substituting Eq. (34) into Eqs. (14) and (15), and taking the expected value, it can be shown

that z1; z2 are Gaussian random variables such that

mz1 ¼ mm

X
i

cos
4npi

N
; mz2 ¼ mm

X
i

sin
4npi

N
;

s2z1 ¼ s2m
X

i

cos2
4npi

N
; s2z2 ¼ s2m

X
i

sin2
4npi

N
;

E½ðz1 � mz1Þðz2 � mz2Þ� ¼ s2m
X

i

sin
8npi

N
; ð36–40Þ

where mzi and szi are the mean and standard deviation of zi:
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Fig. 2. Frequency split distribution for a perfect ring with N randomly spaced, random masses: (a) N ¼ 1; (b) N ¼ 2;
(c) N ¼ 3; (d) N ¼ 5; (e) N ¼ 10; ðf Þ N ¼ 20—‘‘solid line’’, Eq. (31); ‘‘dashed line’’, Rayleigh (Eq. (22)); ‘�’,
simulation of Eq. (13).
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Using the results proved in Appendices B and C in Eqs. (36)–(40) it can be shown that

mz1 ¼
0 if 2n=Na integer;

Nmm otherwise;

(
mz2 ¼ 0;

s2z1 ¼
Ns2m=2 if 4n=Na integer;

Ns2m otherwise;

(
s2z2 ¼

Ns2m=2 if 4n=Na integer;

0 otherwise

(
ð41–44Þ

and that z1 and z2 are always uncorrelated (i.e., statistically independent). Given the conditions
associated with Eqs. (41)–(44), it is convenient in what follows to consider the cases when 4n=N ¼
integer separately from the situation when 4n=Nainteger: These are considered next.
(i) 4n=N ¼ integer: Noting that for this situation sz2 ¼ 0 and using Eq. (13) it can be shown

easily that the frequency split is given by

D ¼
o0nða2n � 1Þ
M0ða2n þ 1Þ

jz1j; ð45Þ

where z1 is a Gaussian random variable. Using a transformation of variable it can be shown that
the probability density function of the frequency split is given by

pðDÞ ¼

ffiffiffiffiffiffiffiffi
2

ps2

r
exp �

1

2

D2 þ m2

s2

� �� �
cosh

mD
s2

� �
; ð46Þ

where

m ¼
0 if 2n=Nainteger;

o0nmmNða2n � 1Þ
M0ða2n þ 1Þ

otherwise;

8><
>: ð47Þ

s ¼
o0nsm

ffiffiffiffiffi
N

p
ða2n � 1Þ

M0ða2n þ 1Þ
: ð48Þ

It should be noted that it is not surprising that m ¼ 0 when 2n=Nainteger; since it was shown in
Section 3.1 that no splits occur for the ‘‘nominal’’ case. In this case Eq. (46) reduces to a ‘‘half
Gaussian’’ distribution, so that

pðDÞ ¼

ffiffiffiffiffiffiffiffi
2

ps2

r
exp �

1

2

D2

s2

� �� �
: ð49Þ

A further situation when a ‘‘half Gaussian’’ distribution occurs is when N ¼ 1 and mm ¼ 0; this
special case is the limiting case for the case of randomly positioned random point masses
considered in Section 4.2 when N ¼ 1:
Figs. 3(a)–(d) shows a plot of the frequency split distribution given by Eq. (46) for different

values of the coefficient of variation ðc ¼ m=sÞ; where c ¼ 0; 1; 2; 3: In this plot normalized axes are
used throughout, and the ‘‘half Gaussian’’ case is shown in Fig. 3(a).
In summary, for the case when 4n=N is an integer the natural frequency splits have the

distribution given by Eq. (46) which reduces to a ‘‘half Gaussian’’ distribution for the special case
when 2n=Nainteger:
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(ii) 4n=Nainteger: Using Eq. (13), and Eqs. (41)–(44) and noting that when 4n=Na integer it is
not possible for 2n=N to be an integer, it can be shown that the natural frequency split is given by

D ¼
o0nða2n � 1Þ
M0ða2n þ 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z21 þ z22

q
; ð50Þ

where z1 and z2 are uncorrelated, zero-mean Gaussian random variables.
Using a transformation of variables in an identical manner to that briefly described in

Section 4.1 it can be shown easily that the frequency split has a Rayleigh distribution (see Eq. (22))
where

s ¼
o0nNsmða2n � 1Þ

M0ða2n þ 1Þ
: ð51Þ

In summary, for the case when 4n=N is not an integer the natural frequency splits always have a
Rayleigh distribution (see Fig. 1).
(iii) Summary: The above rules (for 4n=N ¼ integer and 4n=Nainteger) have been used to

deduce the statistical distribution of the frequency split for different combinations of n ð¼
2; 3;y; 6Þ and N ð¼ 2; 3;y; 8Þ and the results are summarized in Table 2. This table indicates
whether a particular combination of n and N yield frequency split distributions that are Rayleigh
(R), ‘‘half Gaussian’’ (HG) or given by Eq. (46) (S).
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Fig. 3. Frequency split distribution for a perfect ring with N uniformly spaced random masses ð4n=N ¼ integerÞ:
(a) c ¼ 0; (b) c ¼ 1; (c) c ¼ 2; (d) c ¼ 3:
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5. Conclusions

The statistical distribution of the frequency splits arising for in-plane modes of vibration of
circular rings with different types of mass imperfection have been investigated. In particular the
distribution of the frequency split was sought for: (i) random harmonic variations in the mass per
unit length around the circumference of the ring; (ii) the attachment of random point masses at
random locations on the ring; and (iii) the attachment of random point masses at uniformly
spaced positions on the ring. For the purposes of analysis the imperfections considered were
composed of independent random quantities, and expressions for the statistical distributions were
determined. For case (i) it was found that the frequency splits had a Rayleigh distribution. For
case (ii) an analytical representation of the distribution was found which was shown to tend to
Rayleigh distribution as the number of point masses increased. For case (iii) it was found that the
frequency split distribution was dependent upon the mode considered and the number of attached
point masses, and that in some situations the frequency splits had a ‘‘half Gaussian’’ (i.e. non-
Rayleigh) distribution.
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Appendix A. Derivation of Eq. (5)

With the purpose of deriving an expression for the natural frequencies that are independent of
the orientation of the model, it is convenient to re-express Eq. (4) as follows:X

i

mi sin 2nðfi � cnÞ ¼ 0; ðA:1Þ

ARTICLE IN PRESS

Table 2

Natural frequency statistics rules for a perfect ring with uniformly spaced masses for various combinations of mode and

added masses

N

2 3 4 5 6 7 8

n ¼ 2 S R S R R R HG

n ¼ 3 S S HG R S R R

n ¼ 4 S R S R R R S

n ¼ 5 S R HG S R R R

n ¼ 6 S S S R S R HG

S—Eq. (46); HG (half-Gaussian)—Eq. (49); R (Rayleigh)—Eq. (22).
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and re-arrange Eq. (3) as follows:

o2
n1;n2 ¼ o2

0n

M0 a2n þ 1
� �

ðM0 þ
P

i miÞð1þ a2nÞ7ða2n � 1Þ
P

i mi cos 2nðfi � cnÞ

� �
: ðA:2Þ

Without loss of generality, it can be deduced that Eq. (A.2) can be expressed as

o2
n1;n2 ¼ o2

0n

M0 a2n þ 1
� �

ðM0 þ
P

i miÞð1þ a2nÞ7ða2n � 1Þð
P

i

P
j mimj cos 2nðfi � cnÞ cos 2nðfj � cnÞÞ

1=2

 !
:

ðA:3Þ

Using standard trigonometric identities it can be shown thatX
i

X
j

mimj cos 2nðfi � cnÞ cos 2nðfj � cnÞ

¼
X

i

X
j

1
2

mimjðcos 2nðfi � fjÞ þ cos 2nðfi � fj þ 2cnÞÞ: ðA:4Þ

Furthermore, squaring Eq. (A.1) and using standard trigonometric identities it can be shown thatX
i

X
j

mimj sin 2nðfi � cnÞ sin 2nðfj � cnÞ

¼
X

i

X
j

1
2

mimjðcos 2nðfi � fjÞ � cos 2nðfi � fj þ 2cnÞÞ ¼ 0: ðA:5Þ

Adding Eqs. (A.4) and (A.5) givesX
i

X
j

mimj cos 2nðfi � cnÞ cos 2nðfj � cnÞ

¼
X

i

X
j

mimj cos 2nðfi � fjÞ: ðA:6Þ

Expanding the right hand side of this equation using standard trigonometric identities it can be
shown that X

i

X
j

mimj cos 2nðfi � cnÞ cos 2nðfj � cnÞ

¼
X

i

X
j

mimjðcos 2nfi cos 2nfj þ sin 2nfi sin 2nfjÞ

¼
X

i

mi cos 2nfi

 !2

þ
X

i

mi sin 2nfi

 !2

: ðA:7Þ

Substituting Eq. (A.7) into Eq. (A.2) and re-arranging gives

o2
n1;n2 ¼

o2
0n

1þ
P

i mi=M07
ða2n�1Þ

M0ða2nþ1Þ

P
i mi cos 2nfi

� �2þ P
i mi sin 2nfi

� �2� �1=2: ðA:8Þ
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Appendix B. Proof that Eq. (9) is always satisfied

This appendix proves that XN

j¼1

sin
4pnj

N
¼ 0; ðB:1Þ

where n and N are integers.
Consider the situation when N is even such that N ¼ 2M; where M is an integer. In this case

the left hand side of Eq. (B.1) can be expressed as

XN

j¼1

sin
4pnj

N
¼
XM
j¼1

sin
4pnj

N
þ
X2M

j¼Mþ1

sin
4pnj

N
: ðB:2Þ

Noting that sin 2np ¼ sin 4np ¼ 0 for all n; it can be deduced that

XN

j¼1

sin
4pnj

N
¼
XM�1

j¼1

sin
4pnj

N
þ
X2M�1

j¼Mþ1

sin
4pnj

N
: ðB:3Þ

Re-ordering the terms in the second term on the right hand side of Eq. (B.3) gives

XN

j¼1

sin
4pnj

N
¼
XM�1

j¼1

sin
4pnj

N
þ
XM�1

k¼1

sin
4pnð2M � kÞ

N
: ðB:4Þ

Expanding the second term on the right hand side of Eq. (B.4) using standard trigonometric
equations gives

sin
4pnð2M � kÞ

N
¼ sin

8pnM

N
cos

4pnk

N
� cos

8pnM

N
sin

4pnk

N
: ðB:5Þ

Recalling that N ¼ 2M; ensures that sinð8pnM=NÞ ¼ 0 and cosð8pnM=NÞ ¼ 1: Using these
results in Eqs. (B.5) and the resulting equation in Eq. (B.4) gives

XN

j¼1

sin
4pnj

N
¼
XM�1

j¼1

sin
4pnj

N
�
XM�1

k¼1

sin
4pnk

N
: ðB:6Þ

Noting that the two terms on the right hand side of this equation are identical, it can be deduced
that when N is even:

XN

j¼1

sin
4pnj

N
¼ 0: ðB:7Þ

Consider next the situation when N is odd such that N ¼ 2M þ 1; where M is an integer. In this
case, the left hand side of Eq. (B.1) can be expressed as

XN

j¼1

sin
4pnj

N
¼
XM
j¼1

sin
4pnj

N
þ
X2Mþ1

j¼Mþ1

sin
4pnj

N
: ðB:8Þ
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Noting that sin 4np ¼ 0 for all n; it can be deduced that

XN

j¼1

sin
4pnj

N
¼
XM
j¼1

sin
4pnj

N
þ
X2M

j¼Mþ1

sin
4pnj

N
: ðB:9Þ

Re-ordering the terms in the second term on the right hand side of Eq. (B.9) gives

XN

j¼1

sin
4pnj

N
¼
XM
j¼1

sin
4pnj

N
þ
XM
k¼1

sin
4pnð2M þ 1� kÞ

N
: ðB:10Þ

Expanding the second term on the right hand side of Eq. (B.10) using standard trigonometric
identities gives

sin
4pnð2M þ 1� kÞ

N
¼ sin

4pnð2M þ 1Þ
N

cos
4pnk

N
� cos

4pnð2M þ 1Þ
N

sin
4pnk

N
: ðB:11Þ

Recalling that N ¼ 2M þ 1; ensures that sin½4pnð2M þ 1Þ=N� ¼ 0 and cos½4pnð2M þ 1Þ=N� ¼ 1:
Using these results in Eq. (B.11) and the resulting equation in Eq. (B.10) gives

XN

j¼1

sin
4pnj

N
¼
XM
j¼1

sin
4pnj

N
�
XM
k¼1

sin
4pnk

N
: ðB:12Þ

Noting that the two terms on the right hand side of this equation are identical, it can be deduced
that when N is odd:

XN

j¼1

sin
4pnj

N
¼ 0: ðB:13Þ

Thus, it has been proved that Eq. (B.1) is always satisfied.

Appendix C. Proof that Eq. (10) is satisfied only when 2n=Na integer

This appendix proves that

XN

j¼1

cos
4pnj

N
¼ 0 ðC:1Þ

only when 2n=Na integer, where n and N are integers.
The basis of the proof presented here is that the left hand side of Eq. (C.1) is independent of the

order of the summation. A consequence of this is that

XN

j¼1

cos
4pnð j � kÞ

N
¼
XN

j¼1

cos
4pnj

N
ðC:2Þ

must be satisfied for all integer values of k:
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Expanding the left hand side of Eq. (C.2) using standard trigonometric identities it can be
shown that XN

j¼1

cos
4pnj

N
cos

4pnk

N
þ sin

4pnj

N
sin

4pnk

N

� �
¼
XN

j¼1

cos
4pnj

N
: ðC:3Þ

It was shown in Appendix B that XN

j¼1

sin
4pnj

N
¼ 0; ðC:4Þ

where n and N are integers. Using this result in Eq. (C.3) and rearranging it can be shown that the
following equation must be satisfied:

1� cos
4pnk

N

� �XN

j¼1

cos
4pnj

N
¼ 0: ðC:5Þ

The possible solutions to Eq. (B.5) are that

cos
4npk

N
¼ 1 for all k; ðC:6Þ

and/or XN

j¼1

cos
4npj

N
¼ 0: ðC:7Þ

For Eq. (C.6) to be valid it is necessary that 2n=N is an integer. Under these conditions, it can be
shown easily that

PN
j¼1 cosð4npj=NÞ ¼ N; indicating that Eqs. (C.6) and (C.7) cannot be satisfied

simultaneously. Thus for those situations when 2n=N is not an integer, it can be deduced that
Eq. (C.7) must be satisfied.
Thus, it has been proved that Eq. (C.1) is only satisfied under the stated conditions.

Appendix D. Derivation of Eq. (28)

Consider the random variables z1 and z2 defined by Eqs. (14) and (15), where the independent
random variables mi and fi have the following statistical distributions:

pðmiÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2ps2m

p exp �
1

2

m2
i

s2m

� �
; pðfiÞ ¼

1

2p
: ðD:1;D:2Þ

To evaluate the joint probability density function of z1; z2 it is convenient to note that the
probability density function of xi ¼ cosðfi � zÞ is given by [17]

pðxiÞ ¼
1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

i

q ; ðD:3Þ

where �1pxip1 and z is a constant phase angle. This equation is valid for xi ¼ sin fi and cosfi

and ensures that the probability density functions for z1 and z2 are identical.
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Using the definition of the joint characteristic function given by Eq. (29) and noting that the
random variables are statistically independent, it follows that the joint characteristic function is
given by

Mðy1; y2Þ ¼
YN
j¼1

E exp imj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

q
cos ðfj � zÞ

� �� �

¼
YN
j¼1

Z 1

�1

Z
N

�N

exp imj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

q
xj

� �
pðxjÞpðmjÞ dmj dxj

� �
: ðD:4Þ

Substituting Eq. (D.3) into Eq. (D.4) and evaluating the integral wrt xj it can be shown that

Mðy1; y2Þ ¼
YN
j¼1

Z
N

�N

J0 mj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y21 þ y22

q� �
pðmjÞ dmj

� �
; ðD:5Þ

where J0ðyÞ is the zeroth order Bessel function of the first kind.
Substituting Eq. (D.1) in Eq. (D.5) and evaluating the integral wrt mi it can be shown that

Mðy1; y2Þ ¼
YN
i¼1

exp �
ðy21 þ y22Þs

2
m

4

� �
I0

ðy21 þ y22Þs
2
m

4

� �

¼ exp �
Nðy21 þ y22Þs

2
m

4

� �
I0

ðy21 þ y22Þs
2
m

4

� �� �N

; ðD:6Þ

where I0ðyÞ is the zeroth order modified Bessel function of the first kind.
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